
19

A
U
in
• <x>

i -a
: IO

jc

*0

so

10

12

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
Inventorship Evans et al.

Applicant Microsoft Corporation

Attorney's Docket No MS1-688US

Title: Improved DVD Navigator and Application Programming Interfaces (APIs)

TRANSMITTAL LETTERAND CERTIFICATE OF MAILING

To: Commissioner of Patents and Trademarks

Washington, D.C. 20231

From: Thomas A. Jolly (509) 324-9256

Lee & Hayes, PLLC
421 W. Riverside Avenue, Suite 500

Spokane, WA 99201

The following enumerated items accompany this transmittal letter and are being submitted for the

matter identified in the above caption.

Transmittal Letter with Certificate of Mailing included.

PTO Return Postcard Receipt

Check in the Amount of $750.00

Fee Transmittal

New patent application (title page plus 41 pages, including claims 1-12 & Abstract)

Executed Declaration

7 sheets of formal drawings (Figs. 1-14)

Assignment w/Recordation Cover Sheet

CM

u

so

13 Large Entity Status [x] Small Entity Status
[]

14

15

The Commissioner is hereby authorized to charge payment of fees or credit overpayments to Deposit

Account No. 12-0769 in connection with any patent application filing fees under 37 CFR 1.16, and any

processing fees under 37 CFR 1.17.

16

17

18

Date: W'VL-Z 60{ By:.

Thomas A, Jolly

Reg. No. 39,241

20
CERTIFICATE OF MAILING

21

22

23

24

25

I hereby certify that the items listed above as enclosed are being deposited with the U.S. Postal

Service as either first class mail, or Express Mail if the blank for Express Mail No. is completed below, in

an envelope addressed to The Commissioner of Patents and Trademarks, Washington, D.C. 20231, on the

below-indicated date. Any Express Mail No. has also been marked on theJisted items.

EL68527tAK
Express Mail No. (if applicable)

Date: // -99 '00 By: rjttiiMlwhk^
Lori A. Vierra

Lee & HaVes, pllc

EL685Z70489

r

PTO/SB/17{11-00)
Approved for use through 10/31/2002. OMB 0651-0032

,, . D , 0 . t. _ ^ j
U.S. Patent and Trademark Office; U S. DEPARTMENT OF COMMERCEUnder the Paperwork Reduction Act of 1995. no personsm regu ,red tn ipnnnri t0 a collect.on of information unless ',t rf,n.M a v.l.ri OMR rnntm I ni imh

TRANSMITTAL
for FY 2001

Patent fees are subject to annual revision.

TOTAL AMOUNT OF PAYMENT ($) ^60 ,bb

Complete ifKnown

Application Number

Filing Date

First Named Inventor

Examiner Name

Group Art Unit

Attorney Docket No.

Evans

METHOD OF PAYMENT FEE CALCULATION (continued)

1 fxl
^6 Commissioner is hereby authorized to charge

Liy indicated fees and credit any overpayments to:

Deposit
"

Account
Number

Deposit

Account
Name

12-0769

3. ADDITIONAL FEES
Large Small
Entity Entity

Fee Fee Fee Fee

Lee & Hayes, PLLC

Fee Description Fee Paid

[v] Charge Any Additional Fee Required
L^J Under 37 CFR 1.16 and 1.17

I I Applicant claims small entity status.
'—

'

See 37 CFR 1 27

2. Q Payment Enclosed:

B Check C^itcard Money Q ^
FEE CALCULATION

1. BASIC FILING FEE

Fee Fee Fee Fee Fee Description
Code ($) Code ($)

101 710 201 355 Utility filing fee

106 320 206 160 Design filing fee

107 490 207 245 Plant filing fee

108 710 208 355 Reissue filing fee

114 150 214 75 Provisional filing fee

Fee Paid

TIP

SUBTOTAL (1)
| ($) T-l Q

2. EXTRA CLAIM FEES

Extra Claims

Total Claims I Yd1

I -20** = [_ I >
Independent

J \ I

Claims I

—

-—

I

Multiple Dependent

Fee from
below Fee Paid

izzM iai

Large Entity Small Entity
Fee Fee Fee Fee
Code ($) Code ($)

103 18 203 9

102 80 202 40

104 270 204 135

109 80 209 40

110 18 210 9

Fee Description

Claims in excess of 20

Independent claims in excess of 3

Multiple dependent claim, if not paid

** Reissue independent claims
over original patent

** Reissue claims in excess of 20
and over original patent

SUBTOTAL (2)

105 130 205 65 Surcharge - late filing fee or oath

127 50 227 25 Surcharge - late provisional filing fee or
cover sheet

139 130 139 130 Non-English specification

147 2,520 147 2,520 For filing a request for ex parte reexaminatior

112 920* 112 920* Requesting publication of SIR prior to
Examiner action

113 1,840* 113 1,840* Requesting publication of SIR after
Examiner artinn

115 110 215 55 Extension for reply within first month

116 390 216 195 Extension for reply within second month

117 890 217 445 Extension for reply within third month

118 1,390 218 695 Extension for reply within fourth month

128 1,890 228 945 Extension for reply within fifth month

119 310 219 155 Notice of Appeal

120 310 220 155 Filing a brief in support of an appeal

121 270 221 135 Request for oral hearing

138 1,510 138 1,510 Petition to institute a public use proceeding

140 110 240 55 Petition to revive - unavoidable

141 1,240 241 620 Petition to revive - unintentional

142 1,240 242 620 Utility issue fee (or reissue)

143 440 243 220 Design issue fee

144 600 244 300 Plant issue fee

122 130 122 130 Petitions to the Commissioner

123 50 123 50 Processing fee under 37 CFR 1 17(q)

126 180 126 180 Submission of Information Disclosure Stmt

581 <^ 581 40 Recording each patent assignment per
property (times number of properties)

146 710 246 355 Filing a submission after final rejection
(37 CFR § 1.129(a))

149 710 249 355 For each additional invention to be
examined (37 CFR § 1.129(b))

179 710 279 355 Request for Continued Examination (RCE)

169 900 169 900 Request for expedited examination
of a design application

Other fee (specify)

**or number previously paid, if greater; For Reissues, see above 'Reduced by Basic Filing Fee Paid SUBTOTAL (3) ($) ^0

SUBMITTED BY
Complete (if applicable)

Name (Pnnt/Type)

Signature

Thomas A. Jolly]
Registration No.

(Attorney/Agent) 39,241 Telephone

Date

(509)324-9256

WARNING: Information' on this form may become public. Credit card information should not
be included on this form. Provide credit card information and authorization on PTO-2038

thA^mnnnl'nfI

8 *6" 1®"* 1 Th,S^ '5 ?
stimated to take °-2 hours *° complete. Time will vary depending upon the needs of the individual case Anv comments on

EL685270489

IN THE UNITED STATES PATENTAND TRADEMARK OFFICE

APPLICATION FOR LETTERS PATENT

Improved DVD Navigator And Application

Programming Interfaces (APIs)

Inventors:

Glenn F. Evans

Alok Chakrabarti

ATTORNEY'S DOCKET NO. MS1-688US

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

RELATED APPLICATIONS

This patent application is related to co-pending U.S. Patents Numbers

,
(Attorney's Docket Numbers: MS1-703US, MS1-706US, MS1-

707US, MSl-708USvand MS1-709US).

TECHNICAL FIELD

This invention relates to computers and like devices, and more particularly

to improved methods and arrangements associated with a generic navigator

program and the application programming interfaces (APIs) exposed thereby.

BACKGROUND

A digital versatile disc (DVD) player is composed of three logical units, as

defined in the DVD specification. The first logical unit is a DVD player

application that presents an interface to the user and relays user commands to the

second logical unit. The second logical unit a DVD navigator that reads and

interprets the information on the DVD and controls which segments of video and

audio are processed based on the user commands. The third logical unit is a DVD

presentation layer that decompresses data read from the DVD and presents the

corresponding audio, video and subpicture streams, as applicable, to one or more

renderers.

These logical units may be implemented in hardware and/or software. By

way of example, in certain implementations, the DVD player is implanted via a

graphical user interface (GUI) that is displayed to a user, and through which the

user is able to selectively control playback, etc., of the DVD using a pointing

Lee & Hayes, PLLC 1 1122001203 MS1-688US PA TAPP

selection input device, e.g., a mouse. This is usually a fairly straightforward task

for system developers and allows for easy customization.

Implementing a DVD navigator, on the other hand, tends to be a more

complex task. This is especially true for applications that seek to integrate DVD

information into presentations and the like. Here, each developer entity would

need to provide a mechanism for reading and interpreting their DVD, and

interfacing with the decoder mechanism in the DVD presentation layer. Moreover,

the decoder mechanism in the DVD presentation layer will likely be a product of a

third party; making the task of authoring a DVD navigator even more difficult,

since the navigator must interface to many may have different decoder

mechanisms.

Consequently, there is a need for a powerful yet simplified and consistent

interface that player applications can use to control the DVD navigator program.

SUMMARY OF THE INVENTION

Recognizing the potential burdens placed on application developers,

Microsoft Corporation, in an effort to further enhance their operating system and

the user's environment have developed a generic navigator component. This

generic navigator component provides a standard, specification-compliant DVD

navigator as part of Windows® to help application developers avoid such possibly

repetitive and difficult tasks. This generic navigator component exposes two

application programming interfaces (APIs) that combined provide a powerful, yet

simplified and consistent interface that player applications can use to control the

Lee & Hayes, PLLC 2 1122001203 MSJ-688USPATAPP

DVD navigator. The APIs have been designed to further influence the flexibility

and usefulness of the underlying DVD Navigator.

In accordance with certain aspects of the present invention, enhancements

have been developed to further extend the performance of the generic navigator

component. Of significance herein, was the need for improved APIs for use with a

generic navigator program. Here, the navigator program has been enhanced to

better synchronize with the player application, thereby providing better control

mechanisms for the player application, improved enforcement of

restricted/parental controlled content viewing, generation and assignment of

unique identifiers to the content source, and an improved user and player

application environment for starting and stopping playback.

BRIEF DESCRIPTION OFTHE DRAWINGS

A more complete understanding of the various methods and arrangements

of the present invention may be had by reference to the following detailed

description when taken in conjunction with the accompanying drawings wherein:

Fig. 1 is a block diagram depicting an exemplary DVD player device.

Fig. 2 is a block diagram of a computer environment suitable for use with

the DVD player device in Fig. 1.

Fig. 3 is. a block diagram depicting a first mode of synchronization

between a DVD player application and a generic navigator program.

Fig. 4 is. a block diagram depicting a second mode of synchronization

between a DVD player application and a generic navigator program.

Lee & Hayes, PLLC 3 / 122001203 MSJ-688US PA TAPP

Fig. 5 is. a block diagram depicting a third mode of synchronization

between a DVD player application and a generic navigator program.

Fig. 6 is. a block diagram depicting a fourth mode of synchronization

between a DVD player application and a generic navigator program.

Figs 7 and 8 are block diagrams depicting non-blocking and blocking

modes of synchronization, respectively, between a DVD player application and a

generic navigator program.

Fig. 9 is a block diagram depicting exemplary read/write communication

functionality between a player application and a program related to media content.

Fig. 10 is a line diagram depicting a dual-branch playback decision point

associated with restricted/parental control over media content.

Fig. 11 is a line diagram depicting a multiple-branch playback decision

point associated with restricted/parental control over media content.

Fig. 12 is a block diagram depicting an exemplary method for controlling

access to media data through the use of a player application supplied code.

Fig. 13 is a block diagram depicting exemplary media content bookmarking

functionality.

Fig. 14 is an illustrative diagram depicting an exemplary method for

generating a substantially unique identifier for a media source.

DETAILED DESCRIPTION

The following exemplary methods and arrangements describe certain

enhancements and features associated with a generic DVD navigator having APIs

exposed to DVD player applications. These are referred to as the DVD navigator

Lee & Hayes, PLLC 4 1122001203 MS1-688USPATAPP

and DVD2 APIs. It is noted that while most of the description is directed towards

a PC running the Windows® operating system, the various methods and

arrangements are clearly applicable to other operating systems, devices, etc.

Moreover, the use of the term DVD is not meant to exclude other media formats.

Thus, the DVD content itself may come from a hard drive, a compact disc, over a

network, and the like.

As will be described, the DVD navigator and/or DVD2 API enable a player

application to interactively control the playback ofDVD content. The DVD2 API

consists of two interfaces. The first is termed "IDvdlnfo2" The second is termed

"IDvdControl2". The player application may use the IDvdlnfo2 interface to query

the current state of the DVD navigator and the IDvdControl2 interface to better

control playback and/or to alter the DVD navigator's state.

The DVD2 API provides several unique and novel features. For example,

thread-based synchronization methods are provided for real-time playback; a

playback control mechanism is provided to determine the degree of interactivity;

communication mechanisms are provided between the player application and the

disc program, playing of time ranges is supported; mechanisms are provided for

coordinating and handling parental level requests and for determining the minimal

parental level to play a restricted segment of content; and, a unique disc identifier

algorithm is provided, which further supports the bookmarking of any location

within the DVD content

With this mind, attention is drawn to Fig. 1, which depicts an exemplary

DVD player 100. Player 100 includes at least one player application 102

configured to present the user with a user interface (U/I) 104. Through U/I 104,

Lee & Hayes, PLLC 5 J 122001203 MSI-688US PA T.APP

the user is able to instruct player application 102 with regard to the playback of

DVD content 110.

As illustrated, player application 102 is provided with DVD2 API 108a and

108b to communicate user requests, and receive feedback information,

respectively. DVD2 API 108a-b provide access to the functions within navigator

106. Navigator 106 interacts with DVD content 110, which in addition to media

information includes a program 112. Program 112 defines the menus, jumps, etc.,

associated with the remaining content. Navigator 106 includes a state 114

associated with the playback process. Here, in state 114, for example, the current

user operation (UOP) (e.g., play, stop, pause, reverse, fast-forward, slow motion,

angle, etc.) is stored along with the current location within the DVD content (e.g.,

chapter, time, frame) and certain other registers such as those that could record

recent jumps/UOPs

.

The output of navigator 106 includes an encoded video stream, an encoded

audio stream, and a subpicture stream, as applicable. These outputs are inputted to

a decoder 116, which is configured to decode (decrypt and decompress) the

encoded data and output the corresponding streams to the applicable video

renderer 118 or audio renderer 120. Renderer 118 causes the video information to

be displayed to the user, for example, via a video monitor. Renderer 120 causes

the audio information to be reproduces for the listener, for example, via one or

more speakers.

Attention is now drawn to Fig. 2, which is a block diagram depicting an

exemplary computing system 200 suitable for use with the arrangement in Fig. 1

.

Computing system 200 is, in this example, in the form of a personal

computer (PC), however, in other examples computing system may take the form

Lee & Hayes, PLLC 6 1122001203 MS1-68SUS PA TAPP

of a dedicated server(s), a special-purpose device, an appliance, a handheld

computing device, a mobile telephone device, a pager device, etc.

As shown, computing system 200 includes a processing unit 221, a system

memory 222, and a system bus 223. System bus 223 links together various system

components including system memory 222 and the processing unit 221. System

bus 223 may be any of several types of bus structures including a memory bus or

memory controller, a peripheral bus, and a local bus using any of a variety of bus

architectures. System memory 222 typically includes read only memory (ROM)

224 and random access memory (RAM) 225. A basic input/output system 226

(BIOS), containing the basic routine that helps to transfer information between

elements within computing system 200, such as during start-up, is stored in ROM

224. Computing system 200 further includes a hard disk drive 227 for reading

from and writing to a hard disk, not shown, a magnetic disk drive 228 for reading

from or writing to a removable magnetic disk 229, and an optical disk drive 30 for

reading from or writing to a removable optical disk 23 1 such as a CD ROM or

other optical media. Hard disk drive 227, magnetic disk drive 228, and optical

disk drive 230 are connected to system bus 223 by a hard disk drive interface 232,

a magnetic disk drive interface 233, and an optical drive interface 234,

respectively. These drives and their associated computer-readable media provide

nonvolatile storage of computer readable instructions, data structures, computer

programs and other data for computing system 200.

A number of computer programs may be stored on the hard disk, magnetic

disk 229, optical disk 231, ROM 224 or RAM 225, including an operating system

235, one or more application programs 236, other programs 237, and program data

238.

Lee & Hayes, PLLC 1122001203 MS1-688US.PA TAPP

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

A user may enter commands and information into computing system 200

through various input devices such as a keyboard 240 and pointing device 242

(such as a mouse). A camera/microphone 255 or other like media device capable

of capturing or otherwise outputting real-time data 256 can also be included as an

input device to computing system 200. The real-time data 256 can be input into

computing system 200 via an appropriate interface 257. Interface 257 can be

connected to the system bus 223, thereby allowing real-time data 256 to be stored

in RAM 225, or one of the other data storage devices, or otherwise processed.

As shown, a monitor 247 or other type of display device is also connected

to the system bus 223 via an interface, such as a video adapter 248. In addition to

the monitor, computing system 200 may also include other peripheral output

devices (not shown), such as speakers, printers, etc.

Computing system 200 may operate in a networked environment using

logical connections to one or more remote computers, such as a remote computer

249. Remote computer 249 may be another personal computer, a server, a router,

a network PC, a peer device or other common network node, and typically

includes many or all of the elements described above relative to computing system

200, although only a memory storage device 250 has been illustrated in Fig. 2.

The logical connections depicted in Fig. 2 include a local area network

(LAN) 251 and a wide area network (WAN) 252. Such networking environments

are commonplace in offices, enterprise-wide computer networks, Intranets and the

Internet.

When used in a LAN networking environment, computing system 200 is

connected to the local network 251 through a network interface or adapter 253.

When used in a WAN networking environment, computing system 200 typically

Lee & Hayes, PLLC 8 1122001203 MS1-688US PA T.APP

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

includes a modem 254 or other means for establishing communications over the

wide area network 252, such as the Internet. Modem 254, which may be internal

or external, is connected to system bus 223 via the serial port interface 246.

In a networked environment, computer programs depicted relative to the

computing system 200, or portions thereof, may be stored in the remote memory

storage device. It will be appreciated that the network connections shown are

exemplary and other means of establishing a communications link between the

computers may be used.

DVD2 API 108a-b simplifies application authoring, adds functionality and

solves many difficult synchronization issues common to DVD player applications

development. Basically, a common DVD API helps discourage proprietary single-

use monolithic DVD solutions that serve only as standalone DVD player

applications. It also allows various applications (such as presentation programs,

DVD players, games, or interactive learning programs) to add DVD support

without having to know which DVD decoder or DVD hardware support is on the

user's system. Historically, custom DVD solutions tend to be very hardware

dependent and have limited upgrade options for users.

As will be described in greater detail below, DVD2 API 108a-b adds

flexible synchronization mechanisms for the application to know the completion

status of requests made to the DVD Navigator 106. The new command completion

notification allows the application to concurrently perform other tasks and be

informed of the status of a previous request. Previous DVD APIs assumed that

either the application would be blocked until the request was completed, or would

not send any notification to the application. Applications now have the option of

Lee & Hayes, PLLC 9 1 122001203 MS1-688USPATAPP

20

21

22

23

24

25

receiving a synchronization object that they can use to wait on or are notified

about completion events.

The synchronization mechanism also returns the status of the request that

indicates whether it succeeded or returns the reason (an error code) for its failure.

Previous DVD APIs would appear to successfully execute requests that would

later fail due to changed state when the DVD Navigator 106 actually started

processing them. At that point, there was no way to propagate the error indication

back to the player application 102. The new mechanism also notifies the player

application 102 of every request that is cancelled or overridden by the disc's

program 112 or by further user actions.

Current DVD APIs use predefined behaviors that dictate how a command

interacts with the current display. When a player application issues a new request,

it pre-empts and cancels any content (video or audio) that is being played.

Alternatively, the APIs semantics dictate that the current presentation completes

before the new content is presented which forces the user to wait before he/she can

request another action. Interactive applications such as DVD players and games

may require the first behavior (instant effect), but other applications such as a

slideshow may require the second behavior (complete the current presentation).

Since these two options are mutually exclusive, predefined API's semantics cannot

accommodate both. DVD2 API 108a-b allows player application 102 to indicate

the desired behavior via flags, and also how it interacts with the synchronization

mechanism.

DVD navigator 106 is configured to simulate a virtual CPU that uses an

execution state 114 (in the form of a set of memory registers 124 (see, Fig. 9)).

Previous DVD APIs allowed applications to read the contents of the registers.

Lee & Hayes, PLLC 10 1122001203 MSI-688VSPA TAFP

DVD2 API 108a-b also allows player application 102 to also change the contents

of the memory registers. The combined read/write functionality allows player

application 102 to essentially 'communicate' with program 112, as illustrated in

Fig. 9.

The read and write methods works in such a way that they can also be used

for synchronization. By way of example, with read/write functionality, player

application 102 can implement 'controlled unlocking' or restricted access to all or

portions of DVD content 110. With controlled unlocking, the user may be

restricted from viewing portions of the disc until player application 102 sets

specific memory registers. Player application 102 could receive this information

from the content's author, the user, another program, a website, or the like. For

example, Fig. 12 depicts the use of a code being written to registers 124 by player

application 102 and being read by program 112. If the code is correct, then

portion 130 ofDVD content 110 can be played back.

In certain implementations, DVD2 API 108a-b contains a simplified

naming scheme for the potential user operations suggested in the DVD

specification Annex J. The DVD2 API uses less DVD jargon and features a more

intuitive naming scheme. The user operation names proposed in the DVD

specification are unclear and can lead to incorrect usage or under-utilization by

application programs. The names now suggest their usage instead of an abstract

label. Also time codes are now returned in a simple integer format instead of the

awkward BCD coding.

Some previous DVD APIs failed to correctly handle minimum parental

level branching by having the DVD navigator send an error event indicating that

the branch always failed (see Fig. 10). The player application then had to increase

Lee & Hayes, PLLC 11 J 122001203 MS1-688USPA TAPP

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

the parental level and restart the movie from the beginning. If the branch fails, the

player application would need to stop the playback to enter the STOP domain to

change the parental level. It can only continue by restarting the movie.

To the contrary, DVD2 API 108a-b has a mode that pauses navigator 106

and lets player application 102 respond to the parental level increase request

before the navigator 106 continues. If the increase request is granted, the playback

continues without requiring the user to start the movie from the beginning. The

DVD specification only states that the navigator should pause until it knows

whether the request succeeded or failed. It does not describe a mechanism to

accomplish this task and suggests that the Navigator "calls the Temporary Parental

Level Change feature built into the player" (4.6.4.1 V14-197).

Nor does the DVD specification describe any mechanism to allow the user

to play multi-segment parent level branches (see, e.g., Fig 11). As such, previous

DVD APIs did not provide a mechanism that allowed the user to play multi-

segment (or multiple-branch) parent level branches if no branches were permitted

at the current user level. In the past, the navigator only notified the application

that the playback has stopped, since no branch was available for the current

parental level.

To the contrary, navigator 106 and DVD2 API 108a-b compute the

minimum level required to play the block and return this value along with a

playback stopped' notification. The application can then notify the user of the

required parental level that is required to continue playing DVD content 110.

Thus, the user no longer has to guess the required level through trial and error,

having to restart the movie on each try.

Lee & Hayes, PLLC 12 1 J2200J203 MS1-688USPA TAPP

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Additionally, DVD2 API 108a-b extends the functionality of the DVD

Annex J specification and previous DVD APIs. The DVD Annex J specification

only specifies actions to perform. It does not specify how player application 102

finds out information about the disc or the DVD navigator's state 1 14. Here, new

disc and navigation state query functionality is provided.

Unlike previous DVD APIs, DVD2 API 108a-b does not require the

application writer to already have a ready copy of the DVD specification to use it

(e.g., due to the incomplete description of the data returned by the API). The data

returned by the methods to get the textual information, the title attributes, audio

attributes and subpicture attributes is documented so that application developers

can get the necessary information from the new API and the associated

documentation.

DVD2 API 108a-b also allows the application to query the attributes of

arbitrary title indices instead ofjust the current title index. DVD2 API 108a-b also

returns the audio stream's Karaoke information so that intelligent Karaoke

applications can be implemented. DVD2 API 108a-b also returns the capabilities

of decoder 116 so the application can present configuration options to the user

(like frame stepping in both direction, smooth rewind and fast-forward etc.) or

intelligently alter the user interface. New control functionality is also provided.

For example, DVD2 API 108a-b allows player application 102 to play ranges of

chapters or ranges of times, to select specific menu buttons (just not relative

buttons) and allows the user to select buttons using a mouse location. It also

supports the getting/setting of bookmark objects and the ability to query a

calculated current unique disc ID.

Lee & Hayes, PLLC 13 1 J22001203 MSJ-688USPATAPP

18

19

20

21

22

23

24

25

To better understand the synchronization mechanism of the DVD2 API

108a-b and the associated navigator 106, with the application the following

sections examine various exemplarily modes of operation and point out some of

the benefits and shortcomings. Essentially, there are four modes of operation,

along with certain other variations thereto. The initial four modes are illustrated in

Figs. 3 through 6. Each of these modes may be supported by the various methods

and arrangements in accordance with the present invention.

A "don't care" mode or model is depicted in Fig. 3, wherein player

application 102 sends a request to navigator 106, without caring about what the

result, if any, there is, and/or when the request is completed. An example might be

a jump to location request, a show menu request, etc. Here, player application

essentially assumes that the requested operation has been completed.

In Fig. 4, an event mode or model is illustrated. Here, player application

102 is provided notice upon a generic event sent by the navigator (when the

request is completed). One drawback to this model is that player application 102

may have made more than one request and would not be able to tell the events

apart.

An improvement is provided in Fig. 5. Here, rather than having an event

provide notice to player application 102, navigator 106 generates an object that

can then be used by player application 102 to track the status of the request. This

provides player application 102 with the ability to conduct instance tracking.

In yet another improvement, as illustrated in Fig. 6, navigator 106 can

generate an object that can be used for tracking and also a subsequent event. In

this manner, player application 102 can use the objects to tell events apart.

Therefore, this model supports multiple instance tracking.

Lee & Hayes, PLLC 14 1 122001203 MSJ-688USPATAPP

Before describing further details of these various models and the DVD2

API 108a-b, the deficiencies of a blocking-only API or a non-blocking-only API

will be described. One variation is depicted in Fig. 7. Here, player application

102 sends a request to navigator 106 (via DVD2 API 108a, of course). The player

application 102 must wait for a result message from navigator 106. One drawback

to this model is that U/I 104 will probably be "frozen" while player application

102 waits.

One way to solve the frozen U/I problem is to provide a worker program,

such as is depicted in Fig. 8. Here, the worker program receives the request and

forwards it to navigator 106 and then itself waits for the result message. Once the

worker receives the result message then it is forwarded to player application 102.

While this may free up U/I 104, it may be difficult to manage several workers

operating simultaneously.

In contrast, a non-blocking API is equivalent to the "don't care' mode.

There is no direct feedback on the status or result of an operation. The application

must infer the status from changes in the playback (time changes, menu changes,

etc). However, due to variation in disc content and structure, this approach is very

unreliable and error prone. With this mind, the following sections provide

additional details into the use ofDVD2 API 108a-b

All of the IDVDControl methods in previous DVD APIs run

asynchronously to the application (a non-blocking-only model). Thus, when an

application 102 calls a method, the navigator 106 performs preliminary

verifications and then immediately returns a result. However, in the meantime, the

state of the DVD Navigator may have changed and the request may fail when the

DVD Navigator actually begins to execute the command.

Lee & Hayes. PLLC 15 J 12200J203 MS1-688US.PA TAPP

One solution is to change the semantics of the DVD API to ensure that

methods do not return until all requests complete. But to retain the asynchronous

behavior, applications must create separate execution paths (e.g., helper threads) to

manage DVD API calls (as descried above in a blocking-only model).

Multithreaded programming models always complicate application development,

especially simple scriptable interfaces.

Therefore, to solve this problem, the DVD2 API 108a-b creates associated

synchronization command objects. The command object allows the application to

synchronize and to learn about the command's status. Each API method is

extended with two extra arguments. The general form of a DVD2 API command

is:

HRESULTIDVDControl2::Command(arguments, dwFlags, IDvdCmd** ppObj)

Wherein: ppObject is an argument used to return a synchronization COM

(Component Object Model) object to application 102; and, dwFlags is the set of

flags passed to the method to determine the behavior and usage of the

synchronization object. These are a bit-wise union of the available pre-defined

flags.

The synchronization object has the following interface:

interface IDvdCmd : lUnknown

{

HRESULT WaitForStart();

HRESULT WaitForEnd();

}

The object returned must be released by the application. By returning a pre-

incremented COM object, the life of the object can be correctly maintained. A

Lee & Hayes, PUC 16 1122001203 MS1-688USPATAPP

18

19

20

21

22

23

24

25

variation on the interface also extends the original interface by including two

methods that allow the application to wait on the start and end occurance along

with other changes in the system:

HANDLE GetStartHandle();

HANDLE GetEndHandle();

The flags take the following values:

DVDCMDFLAGSendEvents - events are sent regarding the request's

status

DVD_CMD_FLAG_Block - do not continue until the command has been

completed

DVDCMDFLAGNone - a placeholder indicating no flags

The special return code VFWEDVDCMDCANCELLED is returned

by the initial DVD API method, by the IDvdCmd::WaitForStart or

IDvdCmd::WaitForEnd or along with the event indication that the command was

pre-empted and is no longer valid.

A sample example ofC++ usage of a command object is as follows:

IDvdCmd* pObj ;

HRESULT hres = IDvdControl2->PlayTitle (15, DVD CMD FLAG None ,&p0bj);

// don't wait or notify

pObj ->Release () ;

As described above, player application 102 can determine the

commencement and completion of the command, by any of the following: using

the command object directly, using no command objects, listening to command

Lee & Hayes, PLLC 17 1122001203 MS1-688USPATAPP

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

related events, using a combination of events and objects to aid in tracking

multiple instances of a command.

Using objects

By passing an IDvdCmd pointer to the command, the Navigator will

allocate and return a new IDvdCmd object. Calling the interface method

IDvdCmd: :WaitForStart() will block until the command begins and

IDvdCmd: :WaitForEnd() waits until the command completes. If the command

has been cancelled, then the Navigator will return

VFW_E_COMMAND_CANCELLED. After the application is done with the

object, it must call Release() to free the COM object. A NULL pointer passed to

the DVD API indicates that no command object should be returned to the

application and the command execution should continue in the standard

asynchronous mode.

The other two methods GetStartHandle() and GetEndHandle() return a

system specific synchonization object that allows the application to wait for other

requests (disc I/O, user interface changes, semaphore changes, unblocking threads,

communications with other processes, etc) to be processed while it wait for the

start or end events to occurs. Then the application calls the WaitForStart() or

WaitForEnd() methods to retrieve the result. An example in the Microsoft

Windows API:

handleStart = GetStartHandle()

Signaled = WaitForMultipleObjects(handleDiscIO, handleUserlnter, . .
. ,
handleStart

)

If signaled = handleStart

Result = DvdCmd->WaitForStart()

Lee & Hayes, PLLC 18 1122001203 MS1-688US.PATAPP

Not using Objects

Instead of managing an object, the application can simply specify the

DVDCMDFLAGBlock flag with a null object pointer. The command will not

return until it has either completed or was cancelled. The API will emulate a

synchronous behavior. For example:

HRESULT hres = IDvdControl2->PlayTitle(uTitle, DVD_CMD_FLAG_Block,0)

;

is semantically equivalent to:

IDvdCmd* pObj ;

HRESULT hres = IDvdControl2->PlayTitle(uTitle,

DVD_CMD_FLAG_Block, &pObj);

lf(succeeded (hres)) {

Hres = pObj->WaitToEnd();

pObj->Release();

}

Using Events

Specifying the DVD CMD FLAG SendEvents flag will cause the

Navigator to issue the following events:

{EC_DVD_CMD_START, lParaml, HRESULT}

{ECDVDCMDEND, lParaml, HRESULT}

If an application only needs to synchronize one command (or does not

differentiate between command instances), no synchronization object is needed

and only events are required. A NULL object pointer is passed to the DVD API

method and the lParaml value sent with the event will always be set to 0.

Using Events and Objects

By specifying both objects and the DVDCMDJFLAGSendEvents flag,

an application can track different commands. The DVD2 API call will return an

object that the application can use for later reference. When the event notification

is sent, the DVD2 API generates a unique identifier (or 'cookie') lParaml for each

Lee & Hayes, PLLC 19 1 122001203 MS1-688US PA TAPP

event that the application can map back to an IDvdCmd object. The cookie

approach ensures that applications will not leak memory if they miss an event and

allows the DVD Navigator to verify the validity of the object.

The DVD2 API method IDvdlnfo2::GetCmdFromEvent(lParaml) maps

the cookie into a command object pointer. The application must call the COM

"Release" method on the returned pointer after it has finished processing each of

these events. When the application is completely finished with the message

(usually after receiving an END event), it must call "Release" on the global

command pointer that it saved.

Example of Blocking/Non-Blocking

The following illustrative examples show how synchronization can be

accomplished using the IDvdControl2 interface:

For clarity, some of the examples refer to the following utility function used

to map the lParaml value from EC DVD CMD events into an IDvdCmd object:

IDvdCmd* GetDvdCmd(LONG_PTR IParam)

{

IDvdCmd* pCmd;
plDvdlnfo2->GetCmdFromEvent (iParam, &pCmd)

;

return pCmd;

}

No synchronization (Asynchronous model)

The application calls the method to request an action:

HRESULT hres = IDvdControl2->PlayTitle(uTitle, 0, NULL);

Synchronization without events

An example of the correct way to wait for a command to end without using

events is:

IDvdCmd* pObj

;

HRESULT hres = IDvdControl2->PlayTitle(uTitle, 0, &p0bj);

Lee & Hayes, PLLC 20 1122001203 MS1-688USPATAPP

lf(SUCCEEDED) hres)) {

pObj ->WaitToEnd ()

;

pObj ->Release ()

;

}

rtial synchronization using events

To synchronize a single event without managing IDvdCmd objects:

HRESULT hres = IDvdControl2->PlayTitle(uTitle,

DVDCMDFLAGSendEvents, NULL);

Function ProcesEvent(type, lParaml, lParam2)

{

switch(type)

{

case ECDVDCMDEND

:

HRESULT hres = lParam2; // result code is in lParam2

break;

}

}

ill synchronization using events

An example of the correct way to wait for a command using events is:

// in global code

IDvdCmd* pGlobalObj = 0 ;

// Note: pGlobalObj is assigned by the Navigator BEFORE the event

// is issued; otherwise the event can occur at point (*1) before

// pGlobalObj is initialized.

HRESULT hres = IDvdControl2->PlayTitle(uTitle,

Lee & Hayes, PUC 21 1122001203 MS1-688USPA TAPP

DVD_CMD_FLAG_SendEvents, &pGlobalObj);

// (*1)

lf(FAILED (hres)) {

PGlobalObj=NULL;

}

In the event processing function:

Function ProcessEvent(type, lParaml, lParam2)

switch (type)

{

case EC DVD CMD END

:

IDvdCmd* pObj = GetDvdCmd(lParaml)

;

HRESULT hres = IParam2;

lf(NULL!=pObj) {

// if the object returned by the event matches the global pointer returned

// by the PlayTitle, process it

If(pGlobalObj==obj) {

ProcessCmdEnd....

pGlobalObj ->Release () ;

PGlobalObj=NULL;

}

pObj ->Release ();

}

break

;

Lee & Hayes, PLLC 22 II2200 1203 MSI-688US PA TAPP

Full synchronization using events and a separate event loop thread

An example of the correct way to wait for a command using events is:

// in global code

IDvdCmd* pGlobalObj=0;

{

LockCriticalSection

HRESULT hres = IDvdControl2->PlayTitle(uTitle,

DVD_CMD_FLAG_SendEvents, &pGlobalObj);

lf(FAILED (hres)) {

pGlobalObj = NULL;

}

UnlockCriticalSection

}

Function ProcessEvent(type, lParaml, lParam2)

switch (type)

{

case EC_DVD_CMD_COMPLETE:
case EC_DVD_CMD_CANCEL

:

{

CautoLock(globalCritSect);

IDvdCmd* pObj = GetDvdCmd(lParaml)

;

HRESULT hres = IParam2

lf(NULL=pObj) {

If(pGlobalObj==obj) {

pGlobalObj ->Release () ;

pGlobalObj =NULL;

}

pObj ->Release ()

;

}

break

;

}

Exemplary Playback Interactivity Control Mechanism

Previous DVD API commands assumed that on any change of content,

player application 102 wanted to truncate the current content presentation, and it

switched to the new content. The improved DVD2 API commands extend the

command object mechanism with the following flags:

DVDCMDFLAGFlush

DVD_CMD_FLAG_StartWhenRendered

Lee & Hayes, PLLC 23 II22001203 MSJ-688US PA TAPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

DVD_CMD_FLAG_EndAfterRendered

Here, the .._Flush flag indicates that the presentation of the current content

should be immediately truncated so that new content can start to be displayed (like

before). The absence of the flag indicates that the current content presentation

should end first. The Rendered flags change the semantics of the start and end

of each command. By default, the command starts and ends once it has been

processed. The new flags indicate that the start and end occur when the results of

the change of content have been processed and presented respectively.

Exemplary Disc Communication Mechanism

DVD2 API 108a-b permits player applications not only to read the DVD

Navigator's general purpose registers (the GPRMs), but also allows them to set the

GPRMs using:

IDvdlnfo2::GetAIIGPRMs(WORD pwRegisterArray[16]

)

IDvdControl2::SetGPRM(ULONG ulindex, WORD wValue, DWORD dwFlags, IDvdCmd**

ppCmd

)

The combined read/write functionality allows DVD applications to

'communicate' with the program on the disc and can implement 'controlled

unlocking' or restricted access to the content. The application can use

GetAlIGPRMs to read the current state and set a specific register using SetGPRM.

The SetGPRM method can also be used to synchronize the application and

the DVD Navigator's virtual CPU. The SetGPRM method is executed only during

the periods when the DVD Navigator is allowed to process user commands (the

Presentation and Still phases, 3.3.6.1 VI 3-28). Navigation command execution is

considered to be atomic. So setting the GPRM is postponed until these phases

occur. The application can use the command object and event mechanism to

Lee & Hayes, PLLC 24 1 122001203 MSI-688US PA TAPP

1

2

3

4

5

6

7

8

9

10

II

12

13

14

15

16

17

18

19

20

21

22

23

24

25

ensure coordination. The command object's event mechanism is serialized with

event notifications (such as domain changes or changes to system registers). The

application can call SetGPRM and wait until the command completion event is

received, and then wait for an event indicating a change the DVD navigator's state

(possibly a domain change).

One such way to accomplish disc to application communication is

illustrated by the following pseudocode:

Disc sends data and awaits reply:

Disc alters a GPRM value (using a on-disc navigation command)

Disc changes its state (e.g. changes its domain)

Loops waiting for a GPRM change (caused by the application)

Application receives GPRM data and replies:

Waits for the state change (e.g. the disc's domain change)

Reads GPRM value

Sets a GPRM value using SetGPRM

One such way to accomplish application to disc communication is

illustrated by the following pseudocode:

Application sends data and awaits acknowledgement:

Application sets the data using SetGPRM

Application waits for a domain change before continuing

Disc receives data and returns acknowledgement:

Disc reads GPRM

Disc changes its state (e.g. changes its domain)

Exemplary Query (Info) Interfaces

Lee & Hayes, PLLC 25 1 122001203 MS1-688US PA TAPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Even though the DVD specification does not suggest any data retrieval

methods, the DVD2 APIs do provide this capability. The following is a list of

methods provided:

GetAlIGPRMs
GetAIISPRMs
GetAudioLanguage

GetCurrentAngle

GetCurrentAudio

GetCurrentButton

GetCurrentDomain

GetCurrentLocation

GetCurrentSubpicture

GetNumberOfChapters

GetPlayerParentalLevel

GetSubpictureLanguage

GetTotalTitleTime

GetTitleParentalLevels

GetCurrentUOPS

GetCurrentVolumelnfo (IDVD1 ::GetDVDVolumelnfo)

GetDVDDirectory (IDVD1 ::GetRoot)

GetAudioAttributes([in] ULONG ulStream, [out] DVDAudioAttributes *pATR);

GetCurrentVideoAttributes([out] DVD_VideoAttributes * pATR):

GetVMGAttributes([out] DVD_MenuAttributes * pATR);

GetTitleAttributes(ULONG ulTitle, [out] DVDJVfenuAttributes * pMenu, [out]

DVDJTitleAttributes* pTitle);

GetSubpictureAttributes([in] ULONG ulStream, [out] DVD_SubpictureAttributes

*pATR);

GetButtonAtPosition(POINT point, [out] ULONG *puButtonlndex);

GetButtonRect(ULONG ulButton, RECT *pRect):

GetDefaultAudioLanguage(LCID* pLanguage, DVD_AUDIO_LANG_EXT*
pAudioExt):

GetDefaultMenuLanguage(LCID* pLanguage):

GetDefaultSubpictureLanguage(LCID* pLanguage,

DVD__SUBPICTURE_LANG_EXT*pSubpictureExtension);

GetDVDTextLanguageInfo(ULONG ulLanglndex, ULONG* pulNumOfStrings,

LCID*pwLangCode, DVD_TextCharSet * pbCharacterSet);

GetDVDTextNumberOfLanguages(ULONG * pulNumOfLangs);

GetDVDTextStringAsNative(ULONG ulLanglndex, ULONG ulStringlndex, BYTE*
pbBuffer,ULONG ulMaxBufferSize, ULONG* pulActualSize, enum
DVD_TextStringType* pTyp);

GetDVDTextStringAsUnicode(ULONG ulLanglndex, ULONG ulStringlndex,

WCHAR*pchBuffer, ULONG ulMaxBufferSize, ULONG* pActualSize,

DVD_TextStringType* pType);

GetCmdFromEvent(LONG_PTR dwID, IDvdCmd** ppCmd);

GetDecoderCaps(DVD_DECODER_CAPS *pCaps);

GetDiscID(LPCWSTR pszwPath, ULONGLONG* pullUniquelD):

GetKaraokeAttributes([in] ULONG ulStream, DVD_KaraokeAttributes *pATR);

GetMenuLanguages(LCID *pLang, ULONG uMaxLang, ULONG *puActualLang);

Lee & Hayes. PLLC 26 J J22001203 MSJ-688USPATAFP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

IsAudioStreamEnabled(ULONG ulStreamNum, BOOL *pbEnabled);

IsSubpictureStreamEnabled(ULONG ulStreamNum, BOOL *pbEnabled);

Exemplary Control Interfaces

1) Period Playback Interface

In addition to playing ranges of chapters, the DVD2 API allows the playing

oftime periods using:

PlayPeriodlnTitleAutoStop(ULONG ulTitle, DVD_HMSF_TIMECODE* pStartTime,

DVD HMSF TIMECODE* pEndTime, DWORD dwFlags, IDvdCmd** ppCmd)

With this method, applications (such as video editing programs and games)

can accurately playback arbitrary portions of the content. Combined with the

command object mechanism, any application like slideshow presentation, video

games interludes, or kiosks can be implemented using a single DVD2 API

command.

2) Default language Interfaces

SelectDefaultAudioLanguage(LCIDLanguage,DVD__AUDIO_LANG_EXT

audioExtension)

SelectDefaultSubpictureLanguage(LCIDLanguage, DVDSUBPICTURELANGEXT

subpictureExtension)

These methods allow applications (from user) to set the default language

choices for DVD playback.

3) Button index selection

Applications can now automate menu navigation through the method

SelectButton(ULONG ulButton)

4) Bookmarking APIs

Applications can save and restore the entire DVD state (see bookmark

patent)

Lee & Hayes, PLLC 27 1 122001203 MSI-688US PA LAPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

GetState(IDvdState **pStateData

)

SetState(IDvdState* pState, DWORD dwFlags, [out] IDvdCmd* ppCmd

)

5) Other

AcceptParentalLevelChange(BOOL bAccept) - Please refer to the

following "Minimum parental level branching" section.

SetGPRM(ULONG ulindex, WORD wValue, DWORD dwFlags, [out]

IDvdCmd**ppCmd)-

SetOption(DVD_OPTION_FLAG flag, BOOL bEnable) - extendible

option setting mechanism

Mechanism for coordinating minimum parental level branching

According to the DVD specification (section 4.6.4.1 pV14-197), when the

DVD Navigator encounters a 'SetTmpPML' (set temporary parental management

level) command, it should request permission from the application ("call the

Temporary Parental level Change feature built into the player") to temporarily

raise the current level. If the parental level change is allowed, the Navigator raises

the parental level and branches to the restricted piece of content. Otherwise, it

continues with the next command.

Under the semantics of the previous DVD API, when the DVD navigator

executes a SetTmpPML instruction, it only sends a

PARENTALJLEVELJTOOJLOW event to the application. It immediately

continues on executing the next command as if the parental level change failed.

The application receives the event, stops the playback, displays a user interface to

change the parental level, and then restarts the movie from the beginning.

According to the DVD specification, the Navigator is allowed to alter the parental

Lee & Hayes, PLLC 28 1 J2200J203 MSJ-688USPA TAPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

level only when it is in the STOP Domain. As a result, since the navigator does

not pause at the change it must stop the playback.

With DVD2 API 108a-b, for example, the following sequence may occur.

The application notifies the API of the availability of the parental level change

feature by calling the method:

IDVDControl2::SetOption(DVDNotifyParentalLevelChange, TRUE)

When the DVD Navigator encounters a SetTmpPML instruction, it sends

a PARENTALJJEVELJTOOJLOW event to the application. The application is

expected to display some user interface to let the user increase the parental level.

The DVD Navigator blocks until the application responds by calling

IDVDControl2::AcceptParentalLevelChange() with TRUE or FALSE, and then

proceeds accordingly without having to stop the playback.

Mechanism for aiding playback of multi-segment parental level branches

The DVD specification (Section 4.1.4.1 V14-22) describes a scheme for

selecting different program chains (usually different possible segments of content)

based on the current parental level. For example, at a certain point in the video,

different versions of a scene could be available and are automatically selected by

the navigator based on the parental level (e.g. segments intended for PG, R rated or

children).

For each title, the PTL_MAI table maps the current parental level into a 16-

bit mask. During playback, the DVD Navigator obtains the current parental bit

mask from the PTLJMAI table. The parental bit mask is used when the Navigator

encounters a parental block (a collection ofprogram chains in which each program

chain has an exclusive parental bit mask). The Navigator searches each

Lee & Hayes, PLLC 29 ii2200 1203 MS1-688US.PATAPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

PTLID_FLD in the VTS_PGCI_SRP (Section 4.2.3 V14-62) for a program chain

with a bit mask that shares common bits with the current parental bit mask.

If no program chain partially matches the current bit mask, previous

versions of the DVD Navigator would halt the playback and send a

DVDERRORJLowParentalLevel event to the application.

To help the user, certain exemplary implementations ofDVD2 API 108a-b

uses the following algorithm to compute the minimum required parental level that

would let the user continue:

Initialize PTL_MASK = 0 (the possible allowed parental levels)

For each program chain index / in the VTS_PGCI_SRP

If VTS_PGCI_SRP[i].BlockType = 1 (in a parental block)

PTLJMASK = PTLJ4ASK union VTS_PGCI_SRP[i].PTL_ID_FLD

If PTL MASK =0 then

no parental level is present, so any level will work

Else

for each parental level index i in the PTLJMAI

Let PTL_LVLI = PTL_MAI[8- i]

If PTLJLVU[titleJudex] & PTL _MAI[8 -i] = 0

(note: titleJudex = 0 in the VMGM domain)

Return i

The index i is returned along with the DVD ERROR LowParentalLevel

event. The application 102 can use the index to suggest a possible parental level

setting to the user.

Bookmarking

Lee & Hayes, PLLC 30 / J22001203 MS1-688USPA T.APP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

DVD navigator 106 is configured to allow a player application 102 to

encode and store the current state 114 of the DVD playback into an abstract object

(referred to a bookmark 150) containing a persistent block of data. Fig. 13 depicts

exemplary bookmarking functionality.

To further abstract and simplify the usage, DVD2 API 108a-b is configured

to save, restore and query the state information contained in the bookmark. Player

application 102 can query information in the bookmark 150 using the navigator

106 and save it for later use. Player application 102 can later resume playback by

instructing the DVD navigator 106 to restore the DVD playback state 114

contained in the bookmark. Restoring bookmarks allows the player application to

start playing from any arbitrary location, and any number of them for a DVD

content 110, The bookmarks can be stored either in short term (memory) storage

or long term storage (for example, a hard drive), and can be restored even after

player application 102 and/or the PC has been shutdown and restarted. The

bookmark not only contains the state of the DVD navigator (such as internal

register values, playback location, playback state) but also the information about

the current disc content being played and the user's settings. Player application

102 can use this extra information to intelligently select the appropriate bookmark

from previously saved ones that can be played for a particular disc (usually the

disc being played), for example. Bookmarks can be also be shared between users

and between various applications

The bookmarking abstract data type is comprised of two aspects; 1) the

actual bookmark 150 itself, and 2) the API calls used to save, restore and query

information contained in the bookmark. In accordance with certain exemplary

implementations, bookmark 150 contains at least the following information: a

Lee & Hayes, PLLC 31 1 12200J203 MS1-688USPA TAPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

substantially unique disc identifier 145, the address of the current video object unit

(VOBU) being displayed (section 5.1.1 of the DVD specification), the loop count

and shuffle history (Section 3.3.3.2 of the DVD specification), the current DVD

resume information (outlined in section 3.3.3.2 of the DVD specification), the

current DVD general parameter (GPRM) and system parameter (SPRM) values

(sections 4.6.1.1 and 4.6.1.2), and the current domain and phase (section 3.3.3 and

3.3.6). In certain further implementations, the bookmark also includes versioning

and integrity information. The bookmark 150 can be packaged as an abstract

object or as a block of binary data for storage.

To provide such bookmarking techniques, DVD2 API 108 in certain

exemplary implementations supports the following methods:

1 . To create a bookmark from the current location

Bookmark = GetBookmark()

2. To cause the DVD Navigator to change its location to the bookmark

SetBootmark(bookmark

)

3 . To find out the disc that a bookmark is intended for

DiscID = GetDiscIdentifierFromBookmark(bookmark

)

4. To convert a bookmark to and from its binary representation:

BinaryData(data,size) = ConvertBookmarkToBinary(bookmark

)

Bookmark = ConvertBinaryToBookmark(BinaryData

)

Application pseudocode to implement storing the current location or to

implement power saving functionality (i.e. the ability to save the computer's state

to enter a low power state that can be restored):

Bookmark = GetBookmark()

BinaryData(data,size) = ConvertBookmarkToBinary(bookmark

)

Lee & Hayes, PLLC 32 U22001203 MS1-688US.PA T.APP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Store BinaryData(data,size)

Shutdown or enter power saving

On return from power saving, do the following to resume playback of

DVD:

Retrieve BinaryData(data,size)

Bookmark = ConvertBinaryToBookmark(BinaryData

)

If GetDiscIdentifierFromBookmark(bookmark) = current Disc Id

Then

SetBootmark(bookmark

)

An example of pseudocode for an application to implement intelligent

bookmarks

For each stored bookmark "bookmark"

If GetDiscIdentifierFromBookmark(bookmark) = current Disc Id

Then

Add bookmark to the user selectable list

Unique Identifier Generation

The current DVD specification has a built-in unique identifier on each disc

("DVD unique identifier"). However, applications must assume that the disc

authors correctly implemented the identifier; unfortunately, this not always so.

Many applications need a unique tag to identify a DVD disc, such as when

a user swaps DVD discs, the playback system needs to decide if it has a new disc.

If it has a new disc, then it must reset the playback, otherwise it can continue

Lee & Hayes, PLLC 33 112200J203 MSI-688USPA TAPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

without interrupting the user's viewing. If it does not have the ability to

differentiate discs, it must always reset. A unique identifier 145 (see, Fig. 13)

would provide the ability to differentiate different discs (not different exact copies,

however).

A unique identifier 145 also lets applications verify the compatibility of

stored information with a particular DVD disc. Applications cannot successfully

use cached information with the wrong disc. For example, when a user attempts to

recall a saved location on the disc using a bookmark, the DVD navigator 108 can

ensure the data
f

s compatibility by comparing the unique identifier stored in the

bookmark with the unique identifier of the current disc. Playback only continues

if the identifiers match.

Unique identifiers 145 allow applications to associate additional

information with the disc by using the unique identifier as an index into a

database. For example, even though the DVD specification supports textual

information on the disc, it is rarely used. A web-based database of the disc's title

and contents can be stored and retrieved by an application after it computes the

identifier on the disc.

The current built-in unique identifier on the DVD disc is inadequate. First,

the identifier is relatively large in size (32 bytes), it relies on the disc author to

ensure that it is actually unique, and a central entity must assign ranges of

identifiers to disc authors to ensure that the uniqueness is maintained between

companies.

Other conventional "unique" identifier algorithms do not produce unique

identifiers for a large numbers of discs. Here, the probability that two discs are

assigned the same identifier grows exponentially as the total number ofDVD discs

Lee & Hayes, PLLC 34 1 J2200J203 MS1-688US PATAPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

increases. With the expected growth trends in DVD discs, many 'unique' identifier

routines will be inadequate. Moreover, these algorithms often do not have known,

and/or provable properties. Without known properties, it is impossible to state the

effectiveness or suitability of the identifiers produced.

In accordance with certain exemplary implementations of the present

invention, a unique identifier 145 is generated by computing a 64-bit CRC of a

concatenated or otherwise arranged binary representation of the file header and the

file contents of various files in the DVD's VIDEO TS directory. This is capability

is further illustrated in Figs 13 and 14.

AUniqueID2 algorithm generates the identifier in four steps:

Step 1. The filenames of the VIDEO_TS directory are collected and sorted

alphabetically.

Step 2. The file headers from each file are computed in the CRC.

Step 3. The data from the VMGI file ("VIDEO_TS\VIDEO_TS.IFO") is

computed in the CRC.

Step 4. The data from the first VTSI file ("VIDEO_TS\ VTS_xx_O.IFO")

is computed in the CRC.

The 64-bit CRC is computed using an irreducible polynomial in the field

GF(2). An example polynomial is:

P,, = X
64 + X

61
4-X

58 +^
+ x

32
+ x

31 + x
29 + x

26 +x^
The polynomial is generated by finding an exponent n such that x" —1 has

an irreducible (prime) factor of degree 64.

Lee & Hayes, PLLC 35 1 12200/203MSI-688USPATAPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

The actual CRC value is computed, in certain examples, by concatenating

all of the binary data into a single block (bits b0 to bn), assigning each bit b
t
to the

coefficient x
l

in a polynomial, then computing the remainder after dividing by the

polynomial P64 \

CRC
64
= IPS

.i=0

mod/?,
64

Here's an exemplary implementation:

Step 1

The filenames of the VIDEO_TS directory are collected and sorted

alphabetically in to a list.

Step 2

For each filename in the list, the following structure is filled out and added

to the CRC (all data fields are in LSB first):

Unsigned 64 bit integer: dateTime (the time elapsed in 100 nanosecond

intervals from January 1, 1601)

unsigned 32 bit integer: dwFileSize

BYTE bFilename[filename Length
]

BYTE bFilenameTermNull=0

Step 3

If present, the first 65536 bytes of the file "VIDEO_TS\VIDEO_TS.IFO n

are read and added to the CRC. If the IFO file is less than 65536, then the entire

file is added.

Step 4

Lee & Hayes, PLLC 36 1 12200 1203MSI-688US PA TAPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

If present, the first 65536 bytes of the file "VIDEO TS\ VTSJ)l_OIFO"

are read and added to the CRC. If the IFO file is less than 65536, then the entire

file is added.

Although some preferred implementations of the various methods and

arrangements of the present invention have been illustrated in the accompanying

Drawings and described in the foregoing Detailed Description, it will be

understood that the invention is not limited to the exemplary implementations

disclosed, but is capable of numerous rearrangements, modifications and

substitutions without departing from the spirit of the invention as set forth and

defined by the following claims. Additionally, each of the references identified

above is expressly incorporated in their entirety herein, by reference, and for all

purposes.

Lee & Hayes, PLLC 37 1 J22001203 MS1-688US PA TAP?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

CLAIMS

What is claimed is:

1 . An apparatus comprising:

memory; and

logic operatively coupled to the memory and operatively configurable to

access multimedia content from a medium, the logic providing a multimedia

navigator program, a control application programming interface (API) and an

information API, the control and information APIs being configured to respond to

flags that selectively determine if at least one operation will be conducted, the

operation being selected from a group of operations that includes a player-

navigator synchronization operation, a selective interactive user operation, and a

read/write register operation.

2. The apparatus as recited in Claim 1, wherein the player-navigator

synchronization operation performs synchronizing steps that cause a multimedia

player application to output a request command to the navigator program; and a

multimedia content navigator program to subsequently return an event identifier

and status result to the player application upon commencement, completion or

cancellation of the requested command.

3. The apparatus as recited in Claim 2, wherein the request command

and the event identifier are both communicated via at least one application

programming interface (API) operatively associated with the navigator program.

Lee & Hayes, PLLC 38 1 12200J203 MS1-688USPATAPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

4. The apparatus as recited in Claim 3, wherein the API is further

configured to respond to at least one flag value that is selectively set by the player

application to identify that the event identifier and status result should be returned

upon commencement, completion or cancellation of the requested command.

5. The apparatus as recited in Claim 2, wherein the navigator program

is configured to operatively access multimedia information in response to the

request command.

6. The apparatus as recited in Claim 5, wherein the multimedia

information includes digital versatile disc (DVD) formatted content

7. The apparatus as recited in Claim 1, wherein the memory provides at

least one register and the selective interactive user operation causes a multimedia

player application to write data to at least one register that is operatively

associated with a multimedia navigator program and allows at least one program

defined within the multimedia content to read the at least one register.

8. The apparatus as recited in Claim 7, wherein the data includes a

code, and the at least one program responds to the code by allowing at least a

portion of a remaining multimedia content to be accessed.

9. The apparatus as recited in Claim 7, wherein the multimedia content

includes digital versatile disc (DVD) formatted content.

Lee & Hayes, PLLC 39 /122001203 MSJ-688USPATAPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

10. The apparatus as recited in Claim 9, wherein the data includes

precise playback information associated with the DVD formatted content.

11. The apparatus as recited in Claim 10, wherein the precise playback

information includes a title, a start time and an end time.

12. The apparatus as recited in Claim 8, wherein the multimedia player

application writes the data to the at least one register via at least one application

programming interface (API) operatively associated with the multimedia navigator

program.

Lee & Hayes, PLLC 40 i 122001203 MS1-688USPATAPP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

ABSTRACT

In accordance with certain aspects of the present invention, enhancements

have been developed to further extend the performance of a generic DVD

navigator component. Here, the DVD navigator program has been enhanced to

better synchronize with DVD player applications. As such, better control

mechanisms for the player application are provided. For example, improved

enforcement of restricted/parental controlled content viewing, generation and

assignment of unique identifiers to the content source, and an improved user and

player application environment for starting and stopping playback are provided.

Lee & Hayes, PLLC 41 1122001203 MS1-688USPA TAPP

MS1-688US

100

108a

Player

Application

\ 108b
^- 102

cmd
DVD

Navigator

video

Decoder

video

info

audio

audiosubpictur^
114

1

re,

Video

Renderer

06 116

/
/ DVD

X
\
\

1 Content
*

V
\
\

112 /
/

f

Audio

Renderer

118

20

110

t

MS1-688US

MS1-688US

108a

requests

Player

Application

DVD
Navigator

114 \
106

108b
02

108a

Player

Application

requests

DVD
Navigator

EVENT< 114 \
106

108b
102

108a

requests

Player

Application 5

MS1-688US

108a

Player

Application

requests

EVENT

if
OBJ

02

DVD
Navigator

114

108b

106

108a

Player

Application

request
DVD

Navigator

resultM 114 \ *pty.
7

106

02

Player

Application

02 108a

Worker

Program

\

request

DVD v

Navigator ^

result
114M

106

122

MS1-688US

108a

write/send

Player

Application read/receive

108b -J
02

f
106

write/send

read/receive

! 112 :

110

Playback

Stop Player

Jump To Movie

true/false

Deny Access
•

7<^, to

Playback

R

PG Playback

MS1-688US

108a

code
Player

Application

write code

02

110

Player

Application

102

108a

request bookmark

read bookmark

150

108b

106

110

MS1-688US

File 1
Time/Date

Filesize

Filename [namelength+1]

File 2 Time/Date

Filesize

Filename [namelength+1]

File n Time/Date

Filesize

Filename [namelength+1]

Read Files

1 ton

Files

VMGI

VTSI
J

3

2

3

4

5

6

7

8

9

10

n

12

13

14

15

16

17

18

19

20

21

22

23

24

25

22 2000 11:14 FR MICROSOFT BLDG 27 TO 915093238979 P. 27/35

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Inventorship * ^vms %*1
Applicant Mi™ft

iSS
E^n

Attorney's Docket No ;
MSI--688US

Title: Improved DVD Navigator and Application Programming Interlaces (Arls)

DECLARATION FORPATENT APPLICATION

As a below named inventor, I hereby declare that;

My residence, post office address and citizenship are as stated below next to

my name,

I believe I am the original, first and sole inventor (if only one name is listed

below) or an original, first and joint inventor (ifplural names are listed below) of the

subject matter which is claimed and for which a patent is sought on the invention

entitled "Improved DVD Navigator and Application Programming Interfaces

(APIs)," the specification ofwhich is attached hereto.

I have reviewed and understand the content of the above-identified

specification, including the claims.

I acknowledge the duty to disclose information which is material to the

examination of this application in accordance with Title 37, Code of Federal

Regulations, § 1.56(a).

PRIOR FOREIGN APPLICATIONS: no applications for foreign patents or

inventor's certificates have been filed prior to the date of execution of this

declaration.

Power ofAttorney

I appoint the following attorneys to prosecute this application and transact all

future business in the Patent and Trademark Office connected with this application:

Lewis C. Lee, Reg. No. 34,656; Daniel L. Hayes, Reg, No. 34,618; Allan T.

Iree a Mores, pixe 1 112)0016*5 MSl-mVS^ll

NOU 22 2000 11=14 FR MICROSOFT BLDG 2? TO 915093238979 P. 28/35

Sponseller, Reg. 38,318; Steven R_ Sponseller, Reg. No. 39,384; James R

Banowsky, Reg. No. 37,773; Lance R. Sadler, Reg. No. 38,605; Michael A. Proksch,

Reg. No. 43,021; Thomas A. Jolly, Reg. No. 39,241; David A. Morasch, Reg. No.

42,905; Kasey C. Christie, Reg. No. 40,559; Nathan R. Rieth, Reg. No. 44,302;

Brian G. Hart, Reg. No. 44,421; Katie E. Sako, Reg. No. 32,628 and Daniel D.

Crouse, Reg. No. 32,022.

Send correspondence to: LEE & HAYES, PLLC, 421 W. Riverside Avenue,

Suite 500, Spokane, Washington, 99201. Direct telephone calls to: Thomas A. Jolly

(509) 324-9256.

All statements made herein of my own knowledge are true and that all

statements made on information and belief are believed to be true; and further that

these statements were made with the knowledge that willful false statements and the

like so made are punishable by fine or imprisonment, or both, under Section 1001 of

Title 18 of the United States Code and that such willful false statement may

jeopardize the validity of the application or any patent issued therefrom.

Full name of inventor:

Inventor's Signature

Residence:

Citizenship:

Post Office Address:

Glenn F. Evans

Kirkland, WA

Canada

7833 NE 133rd PL
Kirkland,WA 98034

Date: Xjy 22
}
3XD>

Uz « HitVfcS, rue 2 ii2iteif4Stts/-u>us.aei

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

22 2000 11=14 FR MICROSOFT BLDG 27 TO 915093239979 P. 29/35

Full name of inventor:

Inventor's Signature

Residence:

Citizenship;

Post Office Address:

Alok Chakrabarti

^^tAJOA^
Date . /A ^x.i^rw

Bellevue, WA

India

5724 141st PL SE
Bellevue,WA 98006

3 JM0CJ64SMS1-683US.DE!

